
KSME International Journal VoL 17 No. 3, pp. 329~335, 2003 329 

Frequency Domain Properties of 
EALQR with Indefinite Weighting Matrix 

Young Bong Seo,  Jae  Weon  Choi* 
School o f  Mechanical Engineering and Research Institute o f  Mechanical Technology 

Pusan National University, Pusan 609-735, Korea 

EALQR (Linear Quadratic Regulator design with Eigenstructure Assignment capability) has 
the capability of  exact assignment of  eigenstructure with the guaranteed margins of  the LQR for 
MIMO (Multi-lnput Multi-Output) systems. However, EALQR undergoes a restriction on the 
state-weighting matrix Q in LQR to be indefinite with respect to the region of  allowable closed- 
loop eigenvalues. The definiteness of  the weighting matrix is closely related to the robustness 
property of a given system. In this paper, we derive a relation between the indefinite weighting 
matrix Q and the robustness property for EALQR. The modified frequency domain inequality, 
that could be guaranteed by EQLQR with an indefinite weighting matrix, is presented. 
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1. Introduction 

To date many researchers have developed eigen- 
value assignment methods which make use of  
LQR (Broussard, 1982 ; Harvey and Stein, 1978 ; 
Hiroe et al., 1973 ; lnnocenti and Stanziola, 1990 ; 
Ochi and Kanai, 1993; Wilson and Cloutier, 
1990). However, they did not directly consider 
the problem of eigenstructure assignment (Choi et 
al., 1992 ; Choi, 1998 ; Siouris et al., 1995) in their 
papers. Recently, Choi and Seo (1999) introduced 
the EALQR (Linear Quadratic Regulator design 
with Eigenstructure Assignment capability) that 
has the capability of  exact assignment of  eigens- 
tructure with the guaranteed margins of  LQR 
(Dorato et al., 1995; Siouris, 1996) for MIMO 
(Multi-Input Multi-Output) systems. EALQR is 

based on a transformation method using a block 
controller in order to cope with the rank deft- 
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ciency problem in the control input matrix. One 
feature of  the proposed method is that the state- 
weighting matrix Q is obtained by solving simple 
matrix equations which are derived from the 
matrix Riccati equation of  the Hamilton matrix of  
LQR. Another feature of  the method is that it can 
place eigenvalues arbitrarily and exactly at the 
desired locations as well as eigenvectors in the 
least square sense according to the conditions of  
the given system. 

However, EALQR undergoes a restriction on 
the state-weighing matrix O in LQR to be in- 
definite with respect to the region of  allowable 

closed-loop eigenvalues. In some literatures (AI- 
Sumi and Stevens, 1.992; Fujii, 1987; Kenji, 
1998 ; Luo and Lan, 1995 ; Molinari, 1981 ; Ohta 
et al., 1991), the effects of  the indefinite O in LQ 
problem are analyzed. Though they have shown 
that O does not have to satisfy the definiteness 
condition for the existence of  a solution (AI- 
Sumi and Stevens, 1992 ; Molinari, 1981 ; Ohta et 
al., 1991), the definiteness of  the weighting matrix 
O is closely related to the robustness property of  
a given system. In those cases, the frequency 
domain inequality in MIMO systems, which is the 
circle condition (Choi and Seo, 1999) in SISO 
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(Single-Input Single-Output) system, using the 
Nyquist stability theorem (Dorato et al., 1995) 
does not completely hold. However EALQR does 
not guarantee the definiteness of the weighting 
matrix, it is required to investigate further study 
on the robustness of the EALQR with the in- 
definite weighting matrix. 

in this paper, we derive a relation between the 
indefinite state-weighting matrix O and the rob- 
ustness property for EALQR. The modified fre- 
quency domain inequality, that is guaranteed by 
EQLQR with an indefinite weighting matrix, 
using the Spectral theorem for Hermitian matrices 
(Horn and Johnson, 1985) is presented. The fre- 
quency domain stability-robustness bound is cal- 
culated for the case of a flight control system 
design example. 

2.  P r o b l e m  F o r m u l a t i o n  

Consider a linear time invariant multi-variable 
controllable system 

~ = A x  + Bu ( I) 

where x, u denote the n, m dimensional state 
variable and control input vectors, respectively. A 
and B are system and input matrices with appro- 
priate dimensions, respectively. In EALQR, the 
given system should be transformed to a block 
controllable form in order to cope with the rank 
deficiency problem in the control input matrix as 
follows : 

A = [ A n  A12] B = [ ~ ]  (2) 
A21 AnY  

where An, Am A2~, An, and I= are m x m, (n-- 
m) x m ,  rex (n - -m) ,  (n--m) x (n - -m)  dimen- 
sional submatrices of the given system, and m x 
m dimensional identity matrix, respectively. 

The objective of the EALQR problem is to find 
an optimal control input u* that minimizes the 
following cost function and satisfies the required 
conditions for locating the desired eigenvalues 
and eigenvectors. 

1 f®+ r ~  
2Jo ~X ~X + uTRu)dt (3) 

(A-BK)¢,=A~¢, ,  i=1 ,  2, .--, n (4) 

where Q, R, At, and ¢; are a state weighting 
matrix, an input weighting matrix, an ith closed- 
loop eigenvalue, and the corresponding closed- 
loop eigenvector, respectively. The gain matrix, 
K=R-~Brp=[K~ /(,2], of EALQR can be ob- 
tained by solving the following block matrix 
Riccati equation. 

P A + A r p - P B R - ~ B r p + o = O  (5) 

where P has the following form : 

[ RKI RIG. 
P = L R / G  r I= ] (6) 

where K~ and K~ are the submatrices that contain 
information on the desired eigenstructure. 

The Kalman equation, derived from the block 
matrix Riccati equation, is given by 

[ I + K ¢ ( - s ) B ] T R [ I + K ¢ ( s ) B ]  (7) 
= R  +BO r ( - s )  OO (s) B 

where O ( s ) = ( s / - t [ )  -l. If  the matrix Q is a 
positive semi-definite, the circle condition with 
s=jw is satisfied for all o) such that 

[I+KO(-jco) B] rR [ I + K ~  (jto) B] >R (8) 

But, the circle condition is changed in case 
where the weighting matrix has some negative 
eigenvalues. 

The EALQR controller has low-sensitivity for 
all frequency ranges because the matrix [ I+KO 
(j¢0)/~] is the inverse of the sensitivity matrix. In 
particular, the gain margin of the loop transfer 
function KO(s)B  of a single-input system is 
infinite, and the phase margin is greater than 60 
degrees. 

in EALQR, the achieved Q from the block 
matrix Riccati equation is not always guaranteed 
to be positive semi-definite. If O is indefinite, all 
the eigenvalues of Br O r ( - s )  QO (s) B cannot 
be guaranteed to be positive or zero. If EALQR 
does not have a guaranteed circle condition, the 
merit of the EALQR control methodology will 
shrink, although it may be possible to assign a 
desired eigenstructure arbitrarily. Thus, we derive 
a relation between the indefinite state-weghting 
matrx O and the robustness property for EALQR. 
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3. The Modified Frequency Domain 

Inequality 

3.1 Background 
The matrix singular value is defined as 

a(A) = ~  (9) 

where a ( . )  is a singular value of  the matrix ( . ) ;  
(-) * denotes the complex conjugate transpose of  
( . ) ;  and , t(A*A) are eigenvalues of  the matrix 

A*A.  
To decompose an indefinite Q into two sub- 

matrices, i.e., the submatrix that contains only 
positive eigenvalues and the submatrix that con- 
tains only negative eigenvalues, we decompose the 
matrix Q by using the spectral decomposition as 
follows : 

O = OAF r ( 1 O) 

where m, ~', and A are a right modal matrix, a 
left modal matrix, and a diagonalized matrix with 
eigenvalues of  Q in its diagonal, respectively. 

Theorem 1 (Spectral theorem for Hermitian 
matrices) (Horn and Johnson, 1985) 
Let Q E M n  be given, and Mn is a set of  n × n 

dimensional matrices. Then, Q= mA ~ rr= mAre r 
if and only if the matrix Q is real and Hermitian, 
where ~rEMn and A~Mn are a unitary matrix 
and a real diagonal matrix, respectively. 

Based on the above theorem, we can get the 
following theorem. 

Theorem 2 
Let QEMn be given. Then, 

n n 

aC E ] 

Proof  : 

Let us decompose the Q using spectral decom- 
position as follows: 

n 

t=1 

Then, 

A(mAm r) 

Thus, 

=A[mC-A-*,/-A-mr] 
=a [  (CA-m r) r (¢--A-mq ] 

= a [ ~  (¢Z,. @T) r (,/Z," ¢,T) ] 
n 

n , r ]  

i = !  

/I n 

3.2 The frequency domain inequality for 
LOR 

Based on the multivariable Nyquist stability 
theorem (Dorato et al., 1995), the frequency 
domain equality for LQR is derived as 

[ I + G ( - s ) ] r R [ I + G ( s ) ] = R + H ( s )  (11) 

where G ( s ) = R - I B r p ( s I - ~ t ) - I B ,  and H(s)  
=[ ( - s I - A ) - I B ] r Q [  (sI - A ) - ' B ] .  

If Q > 0 ,  then all the eigenvalues of  H(s)  are 
greater than 0, i.e., all the singular values of  
H(s) are always greater than 0. Thus, the fre- 
quency domain inequality is given as 

[ I + G ( - s ) ] r R [ I + G ( s ) ] > R  (12) 

If  we consider a design method with R = p I ,  # > 
0 in Eq. (12), then we obtain 

[ I + G ( - s ) ] r [ I + G ( s ) ] > I  (13) 

Finally, the (Kalman) inequality can be derived 

a s  

a=m[I+G(s)] >1 (0 dB) (14) 

Eq. (14) satisfies the frequency domain properties 
of  the standard LQR. 

Now, we decompose H(s)  into the following 
form by using Theorem 1. 

H (s) =Br ( - s I - ~ ) - r m A ~ r  ( s I - , ~ ) - l B  

= ~ . B  r ( - s I - A  ) - ~ , ~ ,  ( s I  - A ) - ' B  ( I 5) 
i=l  

The eigenvalues of  H(s)  are equal to the sum of 
the eigenvalues with each decomposed term by 
using Theorem 2, i.e., 
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~I[H(s)]=A[B r ( - s l -A) - r~Acr (s I -A)- 'B]  

=~h[Br(-s/-/~)-r#al#r(sI-fi~)- 'B] (16) 

where A[H(s)]  are eigenvalues of the matrix 
H(s) .  

If all the eigenvalues of A are positive, then 
A=vr-z--rf-A "-. Thus, we can rewrite Eq. (16) as 
follows : 

a2[ ,/7[ Or ( s I -  A ) -' B ] 
n 

= X d [  f x [  ¢r ( s I - A  ) - tB]  
i=1 

(17) 

Since EALQR with a positive semi-definite Q 
in the performance index always yields Eq. (17), 
both o~[ . / -~-Or(s I -A . ) - tn]  >0 and H(s)  >0 
are also guaranteed. But, if Q has a negative 
eigenvalue, i.e. O is indefinite, then H (s) >0 is 
not guaranteed. 

In this case, indefinite Q may not yield Eq. 
(17) because the indefinite matrix cannot be 
decomposed in terms of square. 

3.3 The modified frequency domain inequal- 
ity for EALQR 

Given an n x n indefinite matrix Q, it can be 
represented using Theorem 1 as : 

Q =  0 t A l l  + ~)~¢ff+.-.  +cnan¢ r (18) 

Let the r ( < n )  eigenvalues be positive, then 
Eq. (18) can be rewritten as 

O = ( ¢,/1~ ~b r + ' "  "-I- Cr/lr~b r r) (19) 
T T + ( Cr+l~r+lCr+l +""  + CnAnq~n) 

where the n - - r  eigenvalues from r + l  to n are 
have negative values. Thus, Eq. (19) can be 
expressed as 

O = (¢,a, Cf +. . .  + ¢~ar~)  (20) 
_ _ (  T T 

- -  C r + l A r + l  C r + ,  . . . . .  ~ n / l a C n  ) 

From Eq. (20), 

r M 
O=~O,a,¢r-=~r+t¢,(-a, )  O r (21) 

where ~ll>0, i = l ,  " ' ,  r and  - -Al>0,  i = r + l , - " ,  
n. Therefore, in case of EALQR with indefinite 
Q , / l [ H( s ) ]  is obtained as follows: 

~I[H(s)]=~A[B r(sl-t~)-rOAOr(sl-A)-;B-] 

=~A[Br(-sI-A)-r~.~,gf(sI-A)-'B] (22) 
i=1 

- ~, ~1[/~ r (-sI-A)-r~,(-A,)$f(sI-A)-'B] 
i=r+l 

Moreover, Eq. (22) can be expressed using a 
Theorem 2 as: 

r 
A[H(s) ] = ~ [ f~l~[¢,.r ( s I - A )  - 'B]  

(23) n 
- ~. d [ T z 7 7 ~ , ( s I - A ) - ' B ]  

i= r+ l  

in case of A[H(s)]  >0, from Eq. (9) and Eq. 
( l 1), we have 

e~n(J -g[ I+G(s ) ] )  > a = u ( 4 R + n ( s )  ) (24) 

where, the input weighting matrix R is supposed 
to be the approximate identity matrix. Eq. (24) 
becomes as follows: 

e~( f I~[I+G(s)  ]) ~ e ~ ( f g ) a ~ [ I + G ( s )  ] (25) 

Moreover, from the property of singular value 
decomposition (Horn and Johnson, 1985) 

a = ~ [ ~  ] = , / ~ x  ( f R )  +~l[H(s)] (26) 

Eq. (24) can be rewritten using Eqs. (25) and 
(26) as 

a~(fR-)  a~[I  +G(s) ] >,/a~((R-) +~l[H(s)] (27) 

From Eq. (27), we get 

_ / ~ = ( ¢ - R - )  A [ n ( s ) ]  (28) 
a ~  [ I + a ( s l ] a ~l ~ T - ~ )  ~ a~ ( (R-  ) 

Finally, we can conclude that frequency do- 
main inequality of EALQR with indefinite Q is 

a~mx (f-R " ) a [H(s )  ] 
derived if and only if 

~ .  (,/-R-) ~ .  (C-R-) 
in Eq. (28) is positive. 

3.4 The modeling error bound 
Since the sensitivity TFM (Transfer Function 

Matrix), S (s), is [ I +  G (s) ]-t, we can obtain the 
following inequality : 

(./ ~.,,(,q?-) A[H(jw)] ) 
(29) 

Eq. (29) means that the maximum singular value 
of EALQR sensitivity TFM is always smaller 
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than 20 log~o ( l / /O~mx (¢Q~ - ) o ~ m ~  (-crY) ~ A[H(jw)])C~m~(.,/~) 

[dB]. 
Using the relationship for G(s), the closed- 

loop TFM (C (s) -- ( 1 + T (s)) -t T (s)) is given 
by 

> 

Eq. (30) means that the robustness of EALQR is 
guaranteed under the following modeling error 
bound, 

y / o ~ ,  (¢-R--) A[H(jw)] 
÷ (,rR-) 

~axEE (jco) ] < 
. / tflm~ ( f ~ )  A[H(jto) ] 

I *V'  &.(,,rR-- ) 

where E(jw) =G~(jto)-l[G,,(ja~) -G~( jw)  ]. 
GA(jw) and G~(jw) denote actual and nominal 
system, respectively. 

4. Application to a Flight Control 
System Design 

A linear model of a fighter aircraft under 
consideration is the following linearized two-in- 
put 4th-order continuous controllable system 
(Choi and Seo, 1999; Luo and Lan, 1995). The 
aircraft is trimmed at Mach= 1.5 and h=10,000 
ft. The assumed angle of attack is a----0.86 deg. 
The locally linearized lateral directional equa- 
tions of motion are given by [:] 10 93 O 0i2][ 1 ~ = -61 .176 -7 .835  4.991 

31.804 -o.235 -o.994 
o 1 --0.015 ¢ 

-o.oo2 0.002 ] 

8.246 1080~936[ [aT]  
+ 0.249 

0 

where ,8, p, r ,  and ~ represent the sideslip angle, 
roll rate, yaw rate, and roll angle, respectively. 
The $~ and ~r are the deflection angle of the 
differential flap and the rudder, respectively. The 
eigenvalues of the open-loop system are given by 

A ° ~ - -  [ -0.7555 --- 5.8067 i, - 7.8181, 0.007] 

Let the desired closed-loop eigenvalues be --8.00 
(roll), --0.05 (spiral), and --4.88+3.66i (dutch 
roll). That is, 

A d-- [ - 8 ,  -4.88_+3.66i, -0.05] 

The desired left-modal matrix ~a and its nor- 
malized form ~'~r are selected arbitrarily thr- 
ough the relationship of ~T;~----86. A guideline 
for determining the desired left-modal matrix is 
well described in Choi (1998). The specified ~-d 
and ~'[or are given by 

[ 0.6 0.6+0.6i 0.6--0.6i 0.8737 
~.~_/0.4 0.4+0.4i 0.4--0.4i 0.1263 [o 0 0 0 

0 0 0 

[0.8321 0.5883+0.5883i 0.5883-0.5883i 0.9897] 
_, /0.5547 0.3922÷0.3922i 0.3922-0.3922/ 0.1431 / 

°0 0 0 0 0 o] 
According to the design procedure of the 

EALQR algorithm (Choi and Seo, 1999), the 
achievable normalized left-modal matrix ~'naor is 
obtained in the least-square sense as follows : 

-0.5473 0.1086+0.0454i 0.1086-0.0454i 0.9897 
-a ~ /-0.082 0.1029-0.0032i 0.1029+0.0032i 0.1431 
fin°r= I 0.654 0.6936-0.7005i 0.6936+0.7005i 0 

/ 

[-0.5158 0.0454-0 .04i  0 .0454+0.04i  0 

The direction of each vector of the resulting 
achievable left modal matrix is placed near the 
best possible direction of each desired left eigen- 
vector in the least square sense, and the desired 
closed-loop eigenvalues are assigned exactly. The 
feedback gain matrix K and the weighting ma- 
trices Q and R are obtained, respectively, as 
follows : 

/~ I--- 1.5459 --0.0592 4.1769 --0.6326] 
----I---2.9178/ 0.2789 --17.0252 4.3767 d' 

-363.2 17.2 -1145. 292.7 

R=[~ 0] and Q=] 17.2 --0.4 7 --8~34] 
1 ' --1145. 7 396.1 -- 

[ 292.7 --0.3 --87.4 19.6 J 

of the weighting matrix Q are Eigenvalues 
given by 

A(Q) --[ --1218.7, 1270.2, 1.9, --1.4] 
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Fig. 1 Frequency domain properties of the designed 
flight control system 

The maximum singular values of the sensitivity 
TFM (S(joJ)) and the closed-loop TFM (C 
(jw)) in this case have the following bounds. 

a,,ax[S (jr0) ] l 
~/1-0.0434 

= 1.0224 
=0.1927 [dB] 

O'm,x [ C (jto) ] = 2.0224 
=6.1173 [dB] 

Thus, the resulting stability-robustness bound for 
the modeling error is given by 

amax[E (jc0) ] <0.4945 

Fig. ! shows the frequency domain properties 
of the designed flight control system. In this case, 

& ~  (,/-R-) 
Eq. (23) becomes negative. But, oPm(,/-R-) t- 

A[H(s ) ]  
in Eq. (28) is positive, the changed ~ .  (/R--) 

frequency domain properties are negligible be- 
cause each maximum singular value varies under 
each calculated bound. 

5. Conclusions 

The EALQR control design methodology has 
better performance than that of a conventional 
LQR or an eigenstructure assignment approach. It 
combines the respective advantages of both the 
LQR and the eigenstructure assignment while 

removing their crucial disadvantages. But, it has a 
constraint for the weighting matrix, that is, the 
weighting matrix in EALQR could be indefinite 
for some special systems. The definiteness of the 
weighting matrix is closely related to the ro- 
bustness property of a given system. 

In this paper, the effects of the indefinite Q in 
EALQR on the frequency domain properties are 
analyzed. The robustness criterion and quanti- 
tative frequency domain properties are also dis- 
cussed. Finally, the frequency domain properties 
of EALQR have been analyzed by applying them 
to a flight control system design example. 

Since there may exist cases where an achievable 
subspace of an eigenstructure does not belong 
to an achievable subspace of LQR, further dis- 
cussions on the achievable subspace of both 
eigenstructure assignment and LQR should be 
exploited. 
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